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Introduction

Over the past decade, proton radiography (pRad) has proved to be an
increasingly useful tool in the study of high explosives (HE) science.
such as investigating equation of state (EOS) models, material failure
studies, and shock physics. Proton radiography is a unique tool for
verification and validation of the hydrodynamics codes. At LANSCE,
this is accomplished by conducting dynamic experiments that involve
explosives such as PBX-9501 or PBX-9502. An inert material that could
accurately simulate the radiographic properties of HE and replace it for
calibration measurements would be very valuable.
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proton transmission (N'N_), while energy loss results in variations of
proton momentum that cause blurring from chromatic aberrations.
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Fig. 3. Radiographs from a wave-collider experiment. Dynamic expeniments such as this
will benefit from an HE simulant for use in analysis an calibration

Advantages of proton over x-ray radiography

Longer interaction length better suited for hydrotests
=High detection efficiency of charged particles
+Ability to transport and focus charged beam

*Multi-pulse capability

Materials and Methods

PBX-9501 and PBX-9502, like most explosives, are almost purely
CHNO compounds with high percentages of nitrogen and oxygen.
However, many potential substitute chemicals with similar chemical
formulas are either flammable or explosive themselves, present health
hazards, or are uncommon. To avoid these problems, we investigated
polymers.

Most polymers are long chains of hydrocarbons that contain a high
percentage of carbon, but some contain oxygen, nitrogen, halogens and
other elements.
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Table 1. Namc and properties of the polymers  Plot 1. We found the fluorine and chlorine

that were modeled. Hazardous polymers are contaning polymers o be the closest
shown in red match 1o the properties of PBX-9501 and
PBX-9502

Equations for pRad

Multiple Coulomb Scattering:

13.6 Ml T

Polymer benefits

*Readily available
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Transmission:

*Inexpensive
+Safe (nonreactive)

«Easily machined and handled
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Data and Results

A “step wedge” is used for pRad calibration to determine the range of
areal densities seen in the dynamic object being radiographed. As a
quality assurance measure, we validated our calculation models using
previous radiographs.
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Plot 2. The calculated predictions match the
radiograph data to within 3%, Transmiss
include nuclear interactions. Between these two

Fig. 4. Previous static values

radwgraph 1aken of two

polymer step wedges polymers. Teflon is a closer match to actual HE as

represented by PBX-9502

*Range of formulas and densities

Step Wedges Built

1. 47.5% PET/ 52.5% PTFE - PBX-9501 Match

2. 44.5% PET/55.5% PTFE - PBX-9502 Maich

3. PVDF - Average match for PBX-9501 & PBX-9501

Fig. S(A,B). Picture and
radiograph of the stack of the
step wedges. Beam direction
15 shown in red. PVDF 15 mn-
between the two PET/PTFE
step wedges. The radwograph
shows that the transnmissions

Were very similar
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Plot 3, Data fit for the step wedges
Since the data points from the models are
so sinlar, only the PET'PTFE (PBX-
9502) Model was shown

Plot 4. Changing the magnct scttings for
the lens system affects the beam cnergy
and the transmission. These settings allow
us to focus on different lengths of
muaterial

Conclusions

The PET PTFE polymer combinations turned out to be accurate
simulants for both PBX-9501 and PBX-9502. These step wedges will aid
in the analysis by making the use of HE calibrations unnecessary to
calculate areal densities of HE in dynamic shots.
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Table 2. Comparison of potential HE simulants. Valucs are from model predictions for
materials that are scaled by length to match PBX-9501 and/'or PBX-9502

It is estimated that the areal densities calculated from a radiograph are
within 3% of the actual values. However, the focal plane of the magnetic
lens system and scattering from beam line “windows,” and other sources
of background are factors for error in calculations.

PVDF is proven to be a choice simulant for HE. As a single material
without any scaling, it is within 0.3% of the transmission for the most
common HE materials used in pRad.
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